Using Unikernels to Enhance the Attack-
Resistance of Spire, a Network-Attack-Resilient
Intrusion-Tolerant SCADA for the Power Grid

Brad Whitehead
Mike Boby

CS3551 - Advanced Topics in Distributed Systems
Class Project Checkpoint #1

March 24, 2020

Project Goals

Convert Spire to self-contained unikernels and demonstrate that:

* They continue to operate correctly and

* They exhibit the increased performance and reduced resource
utilization characteristics of unikernel technology

* Spire compromise resistance can be increased by combining
polymorphic executables (Multicompiler) with unikernel

* If possible, demonstrate the increased compromise resistance of
the unikernel-based Spire (both GCC- and multicompiler-based)

[Red = Changes from original]

Anticipated Project Steps

1)Familiarization with the Spire system (ebtatrand-cemptetheecede(Done) and run
the supplied benchmarks

2 v aTtaote o CT oTarTeSata—StEtc BASS B B LAY oo .(Done)
3 HEpErepratepapereiatkerrelsandseeuriby-tepresertrclass (Done)
4)Compile the Spire executables into unikernels

5

Iteratively, make necessary code changes
6)Test and benchmark Spires unikernels using the included benchmark suite

JRe
)Se
)
)
)
)

7)Investigate the compromise resistance of the Spire unikernels (this step is dependent
on the availability of any existing compromise/penetration tests or test tools)

8)Document the project

9)Prepare and deliver project presentation for class

Accomplishments To-Date

* Met with Dr. Babay to review Spire and recommended configuration
* Set up testbed (OS, accounts, and remote desktop access)

* Created Git repositories in ‘/opt’ for:
— Spire
— Multicompiler
— Hermitux (primary unikernel system candidate)

— Nanovms (alternative unikernel system candidate)

* |Installed known build dependencies

* Configured GNU gold.ld (as opposed to the normal GNU Id) as the default
(required by the Multicompiler)

* Installed Docker (for Hermitux and Nanovms build systems)

Challenges and Lessons Learned To-Date

* Secure remote computing is still (too) difficult to configure

- We live in a cloud computing world, however...

— Setting up ssh and remote desktop protocol (RDP) is still bizarre and non-intuitive

Linux build systems for source code are still (too) uncertain

— Successful outcomes are too dependent on operating system distribution, distribution
version, build system version, dependency versions, etc

Outside events (pandemics) can have unexpected effects on project planning

— Upside - Boccaccio’s Decameron and Chaucer’s The Canterbury Tales

* Common theme - written in self-isolation during plague periods

* Inspiration to make unikernel, polymorphic Spire a classic best seller ;-)

Things take longer than expected

— Definitely not a new lesson :-(

Revised Project Plan

Class Week #11 (March 22 - 28)

- Present Status Checkpoint to Class
— Compile Spire system using GCC
— Install KVM and create the VM configuration files for the 6 8 VMs we need to test Spire

— Run the Spire benchmark, using recommended configuration
Class Week #12 (March 29 - April 4)

— Compile Hermitux build tools

— Link Hermitux and GCC-compiled Spire executables

— Re-run the benchmark, using these Hermitux unikernel executables
Class Week #13 (April5-11)

— Compile Multicompiler

— Re-compile Spire using the Multicompiler

— Re-run the Spire benchmark, using the Multicompiler-compiled executables
Class Week #14 (April12 - 18)

— Link Hermitux and Multicompiler-compiled Spire executables into unikernel executables

— Re-run the benchmark using the Hermitux & Multicompiler unikernels
Class Week #15 (April 19 - 23)

- Present Finding to Class

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

